

Design of the Mu2e Straw Tracker Detector

New Perspectives 2017

Manolis Kargiantoulakis 06/06/2017

Mu2e in a Slide

- Experiment and apparatus just presented by J. Colston, Mu2e in 10 minutes
- Mu2e will search for signatures of Charged Lepton Flavor Violation
 - New Physics sensitivity up to mass scales of 10,000 GeV
 - A very important test to guide future of HEP theory and experiments
- Neutrino-less conversion of muon into electron in the field of Al nucleus.

The Mu2e Tracker

Detector Solenoid

- Characteristic signature of CLFV: 105 MeV conversion electron
 - Spiraling in helical orbit from Al stopping target
- The Mu2e Tracker: primary detector for the experiment.
 Designed to efficiently detect conversion electron and reconstruct trajectory
 - Required resolution 180 keV @ 105 MeV, or <0.18%
 - Operation in vacuum and in magnetic field
 - Must reject backgrounds from conventional processes

Background Process: Decay in Orbit

- Nuclear modification pushes decay-in-orbit (DIO) spectrum near conversion electron energy
- Overlap after energy loss in material and detector resolution
- DIO electrons only differ from signal through its momentum
 - → Need low-mass detector with good resolution, especially on high side

Tracker Straw Tubes

Detecting element:

Gas drift tubes, or "straws"

- 5mm diameter, 0.5-1.2m long
- 15µm mylar wall, metalized
- 25µm gold-plated tungsten wire at ~1450V
- Gas Ar:CO₂ 80:20 at 1atm

5 mm

Excellent fit to tracker requirements

- Low mass, minimize multiple scattering
- Highly segmented, handle high rates
- Operation in vacuum (10⁻⁴ Torr), straws must not leak
- Reliable lifetime of 10 yrs, must operate for a full year without service

Minimal unit fully instrumented, including front-end electronics: 120° panel of 96 straws

120° panel of 2x48 straws, two staggered layers

Tracker Annular Design

Panel unit is rotated and repeated, with hole in center.

- 12 panels per station, 18 stations
- Total 216 panels, ~21,000 straws
- 30° rotation for stereo reconstruction

Annular design:

~97% of DIO electrons produce no hits
Tracker is blind to nearly all DIO background
Only electrons >90MeV have reconstructable tracks

Tracker Front-End Electronics

Front-End Electronics (FEE)

- Readout of straw signals
- Signal shaping and processing
- Digitization and transmission to DAQ

Preamp boards

Requirements:

- Supply HV to straws (and capability for remote HV disconnect)
- B-field perturbation <1G in the active detector region
- Sustain radiation damage from target
- Low power <10kW within cooling capabilities
- <12×96 dead channels in 5 yrs at 90% CL

Measurements:

- TDC measurement of drift time resolution: 2ns (<200µm drift radius)
- Straw readout from both ends for time division measurement
 - yields hit position along straw axis, <4cm resolution
- ADC for dE/dx measurement to identify highly-ionizing proton hits

FEE Design

Preamplifier and Shaper

- 2- channel preamp boards connecting to straws, mounted on analog motherboard
- Straw signal readout
 - Low-noise high-speed input stage
 - SiGe technology BJT
 - Active 300Ω termination to avoid reflections
 - Differential output for good CMRR
- Provide HV and ground to straws
 - Remote disconnect from HV via thermal fuse
- Shaping of straw signal before digitization
 - Fast rise, long tail from ion motion
- Calibration system mimics e- pulse

Digitization and Readout

All signals routed to DRAC – Digitizer Readout Assembler and Controller

Serves entire panel (2×96 TDCs and 96 ADCs)

Digitization

Each straw end goes into comparator and TDC (implemented in FPGA) Two ends are analog summed and into 12-bit ADC, sampling at 50MHz Data packaged (FPGA) and sent to ROC

Readout

Receives and buffers data from digitizer FPGAs Duplex optical communication to DAQ Panel control and monitoring

Summary: FEE Components

DRAC mezzanine card

Digitization and ROC

Status/Outlook

- Latest panel prototype recently constructed and being tested
- FEE prototypes created and tested successfully.
 FPGA firmware under development, but functionality has been shown.
- Vertical slice test to be performed on fully instrumented panels with entire FEE chain
 - Ground loops, noise, crosstalk
- Detector installation in 2020, followed by Mu2e commissioning and data!

Latest Tracker panel prototype

ADC samples from calibration pulse read out from DRAC

Backup

Signal and DIO Background

For $R_{\mu e} \approx 10^{-16}$ we expect to see ~4 conversion events without background contamination

Small-scale prototype

FEE chain tested in 8-channel prototype.

ADC output from electron and proton pulses shown below.

Preamp saturation allows identification of proton hits.

Pulsed Beam and Delayed Signal Window

- Proton pulse period: 1695 ns (FNAL Delivery Ring)
- Delayed signal window: 700 → 1600 ns
- Pion lifetime: 26 ns prompt backgrounds decay before signal window
- Muonic Al lifetime: 864 ns reason for selecting Al target

Require beam extinction (fraction of beam between pulses): $\varepsilon < 10^{-10}$

Tracking

From individual straw hits in tracker we need to:

- Remove background hits
- Identify hits from single particle (pattern recognition)
- Reconstruct particle's trajectory (helix fitting)

Signal electron + all hits over 500-1695 ns window

Detailed G4 model: straws, electronics, supports, B-fields

Tracker Momentum Resolution

Least squares helix fit, followed by iterative Kalman Filter track fit

Tracker momentum resolution requirement: $\sigma_{p}/p < 0.2\%$ for a 105 MeV electron, or $\sigma_{p} < 180$ keV/c

Preamp ESD protection

R8,R9: Current-limiting resistors. Input resistance contributes to thermal noise.

D1,D2: Diodes for ESD protection, shunt to ground on overvoltage. Capacitance limits BW.

Q5: 1st stage BJT to be protected, Infineon BFP842.

